

Inversion of GRACE Gravity for Global Surface Mass Variations

Xiaoping Wu, Erik Ivins, Ping Wang Jet Propulsion Laboratory 2000 Spring AGU Meeting

Objective

- Convert sat-to-sat gravity measurements into global surface mass variation as a function of space and time
- Assess separability of geophysical sources, accuracy, resolution, and role of complementary data

Forward Model

$$\begin{split} g^{i}(t) &= \iint_{\Omega} E_{g}^{i}(\Omega) M(\Omega, t) d\Omega + \Delta^{i} \\ \dot{g}^{i} &= \iint_{\Omega} E_{g}^{i}(\Omega) \dot{M}(\Omega) d\Omega + \int_{-\infty}^{t} \iint_{\Omega} V_{g}^{i}(\Omega, t - t') M(\Omega, t') d\Omega dt' \\ L &= AX + BY + CZ + \Delta \end{split}$$

Simultaneous Global Solution

Why?

- Spatial coupling of gravity signal
- Alias across geographic boundaries
- Clear definition of derived quantities
- Exact posterior covariance
- Platform for future simultaneous non-linear inversion of radial mantle viscosity profile and ice load

Simultaneous Global Solution

Data:

- GRACE gravity harmonic rates up to degree/order 90
- Altimeter height change rate over Greenland and Antarctica σ = 2 cm/yr

Parameters: over 300 km 300 km grids

- Current and past ice mass variations over Greenland and Antarctica
- Deglaciation of ancient ice sheets
- Global oceanic mass variation
- Global hydrological mass variations

